

Reg.	No:												
	SIDD	HART	H INS	STITU	TE O	FEN			G & T	ЕСН	NOLO	OGY:: PUTTUR	
	M.T	ech I	Year	l Sem	neste	(AU (R16	6) Re	gular	Exan	ninati	ons .	January 2017	
			Α	DVAN		DIGIT.		GNA	_ PRO	DCES	SING	6	
				(Fo	or Stu	dents	adm	itted i	n 201	6 only	y)		
Time: 3	3 hour	S		, ,								Max. Mar	ks: 60
				(Ansv	wer al	I Five		6 5 X '	12 =6	0 Ma	rks)		
•							UNI	<u>T-I</u>					
Q.1	а	Expla	ain ti Inles	ne c	lassifi	catior	n of	LII	discr	ete 1	time	systems with	6M
	b	Defin	e DF	T and	IDFT	. Sta	te pro Ol	pertie R	s of E	DFT			6M
Q.2	а	Expla	ain the	e ene	rgy sp	ectru	m of	a disc	rete t	ime s	eque	nce	6M
	D	Chec (i). Y	k whe (n)=2	ether x(n+2	the fo)-x(n-	llowir 2) (ii	ig sys) Y(n) UNI	stems =n ² x(2 T-II	are L 2n)	llor	not:		6M
Q.3	а	Write	e a br	ief no	tes o	n latti	ce str	ructur	es. M	entio	n the	advantages of	
	h	lattic	e stru	ctures	S	multi	olior i	ooliza	otion	ofo	lonatk	n 0 tuno 2 EIP	6M
	U	trans	fer fu	nctior	1. 1.	mun	pliel i	callza		orai	lengu		6M
_							O	R					
Q.4	а	Reali FIR d	ze th casca	e 4th ded la	orde attice	r FIR struct	trans ure	fer fur	nction	usinę	g pow	ver - symmetric	
	h	Evol	nin tk	$H_4(z)$	=1+0	$2Z^{-1}$ -	+0.3Z ⁻	$^{2} + 0.37$	76Z ⁻³ -	⊦0.06Z	(-4 + 0)	$2Z^{-3}$	7M
	D	funct	ion	ie G	ay-ivi	aikei	met	nou d		alizati			5M
							UNI	T-III					
Q.5	а	What	t do	you	under	stanc	l by	the te	erm I	Polyp	hase	structures for	5 M
	b	The I	be rai	vidth	of a s	eauei	nce x	(n) is :	3.4 K	Hz ar	nd it s	ampling rate is	DIVI
	-	to be	redu	iced,	by de	cima	tion fr	rom 2	40 KI	Hz to	8KHz	z. Assume that	
		an O	ptima	I FIR	filter	is to	be us	ed, w	ith ar	over	all pa	ass band ripple	
		Decir	nator	stop	Danc	i libh	ne u.	UT.De	sign	an e	mcie	ni iwo Slage	7M
							0	R					
Q.6	а	Expla	ain the	e time	e dom	ain ai facto	nd fre	quenc	cy dor	nain a	analy	sis of sampling	6M
	b	Perfo	orm t	he tw	ioya io-bar	nd po	bly-ph	ase d	decon	nposit	tion o	of the transfer	UNI
		funct	ion			•				•			
								2 .	2				

$$H(z) = \frac{2+z^{-2}}{1+0.75z^{-2}}$$
 6M

UNIT-IV

Q.7	а	Compare parametric and non-parametric Estimation of Power												
		spectrum using ARMA model	6M											
	b	Discuss in brief about Burg Method and List out the Advantages ar												
		Disadvantages of it												
		OR												
Q.8	a Discuss in brief about Welch method of Power Spectrum Estim													
	b	Derive the relation between Auto-Correlation and Model parameters												
		of ARMA and from that derive for AR and MA models	6M											
		UNIT-V												
Q.9	а	Explain Spectral analysis of non-sinusoidal signals.	6M											
	b	Explain some of the special audio effects that are implemented in												
		digital for musical sound processing	6M											
		OR												
Q.10	а	Explain clearly about guantization in ADC and the effect of it on data												
		length. Relate length to noise power spectral density	6M											
	b	Explain the methods to represent number for digital computation	6M											
		· · · · · · · · ·												

*** END ***